Theoretical Investigations of the EPR Parameters of Ti³⁺ in Beryl Crystal

Wen-Chen Zheng^{a,c}, Qing Zhou^a, Xiao-Xuan Wu^{a,b,c}, and Yang Mei^a

a Department of Material Science, Sichuan University, Chengdu 610064, People's Republic of China
b Department of Physics, Civil Aviation Flying Institute of China, Guanghan 618307,
People's Republic of China

^c International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China

Reprint requests to W.-C. Z.; Fax: +86-28-85416050; E-mail: zhengwc1@163.com

Reprint requests to w.-C.Z., rax. +00-20-03410030, E-man. Zhengwer@103.com

Z. Naturforsch. **61a.** 286 – 288 (2006); received November 23, 2005

The EPR parameters (g factors g_{\parallel} , g_{\perp} and hyperfine structure constants A_{\parallel} , A_{\perp}) of Ti^{3+} ion at the sixfold coordinated Al^{3+} site with trigonal symmetry in beryl crystal are calculated by the third-order perturbation formulas of $\mathrm{3d}^1$ ions in a trigonal octahedron. In the calculations, the crystal-field parameters are obtained by the superposition model, and the impurity-induced local lattice relaxation (which is similar to that found for Fe^{3+} in beryl) is considered. The calculated EPR parameters (and also the optical spectra) are in reasonable agreement with the experimental values.

Key words: Electron Paramagnetic Resonance; Crystal- and Ligand-Field Theory; Local Lattice Distortion; Ti³⁺; Beryl.